Answer:
Explanation:
A )
[tex]L_{max} = \sqrt{l(l+1)}[/tex]β
where l is orbital quantum number
l = n-1 where n is principal quantum no
Given n = 7
l = 7 - 1 = 6
[tex]L_{max} = \sqrt{6(6+1)}[/tex]β
= 6.48β
B)
Here
n = 26
l = 26 - 1
= 25
[tex]L_{max} = \sqrt{25(25+1)}[/tex]β
= 25.49β
= 25.5β
C )
n = 191
l = 191 - 1
190
[tex]L_{max} = \sqrt{190(190+1)}[/tex]
= 190.499β
= 191β